

EA-6B Weapon System Support Laboratory (WSSL) Simulations

Titan Systems Corporation

EA-6B Weapon System Support Laboratory (WSSL) Simulations

- EA-6B Simulation Summary
 - Basic Architecture
 - Avionics
 - Navigation
 - Threat Environment
 - Data Analysis
- Simulation Development and Testing
 - Development
 - Test and Update Process
 - Discrepancy Reporting, Tracking and Version Control

Basic Architecture

- VME based client server protocol
 - real time server applications run on VME based Alpha processor running VxWorks operating system
 - client applications run under Microsoft Windows and X-Windows (VMS and UNIX), communication to server via TCP-IP
- Hardware specific signals generated by use of COTS VME boards
 - synchro
 - analog
 - digital
 - Mil-std 1553 A and B
 - Arinc-429
- Relay switching between actual hardware and simulation controlled by Alpha

Avionics

- Due to inability or difficulty in stimulating actual avionics some boxes are simulated, while others are simulated for convenience
 - AN/ALQ-99 Jamming pods
 - Navigation
 - CAINS, EGI, MAGR, AHRS, SCADC
 - Raymond Recorder Set (RRS)
 - Mission Data Loader (MDL)
 - Link 4A
 - HARM Block 6

AN/ALQ-99 Pods

- Universal Exciter (UE) or Universal Exciter Upgrade (UEU) simulation
 - simulates up to 5 pods with 10 transmitters
 - supports all existing transmitters (1,2,4,6,7,8,9 and 10) as well as Low-Band Transmitter
 - allows antenna steering failures
 - allows power loss failures
 - status and failures in 1553 messages can be set

Navigation

- AN/ASN-130A CAINS and AN/ASN-172 EGI including 1PPS signal
- AN/ASN-50 Attitude Heading Reference System
- Simulates Miniaturized Airborne GPS Receiver as used Block 89 aircraft
- CPU-140/A SCADC
 - Simulations do not attempt to reproduce internal processing
 - Only fields required for current OFP operation are modeled
 - status and failure bits can be set.

Navigation

- Navigation avionics are controlled by one or a combination of several methods
 - Stick and Throttle
 - allows user to interactively fly the aircraft
 - Static
 - preset values are determined and do not change with time
 - allows failures to be set
 - Dynamic
 - a user defined flight path is used to determine output values
 - IMUX replay
 - uses IMUX recorded navigation data to determine output values
 - TACAN station and ILS simulations
 - support TACAN and ILS modes of EFIS navigation

Load Devices

- In general simulation of load devices simplify development and test efforts by eliminating dependence on RRS tapes and DDS cartridges
- RRS simulation
 - Due to the lack of reliability and availability of RRS tapes the RRS is simulated in the WSSL
 - Computer loading is faster
 - Utility functions allow reading and writing of RRS tapes
- MDL simulation
 - Allows faster development and test by eliminating the need to reprogram DDS cartridges
 - Utility functions also allow reading and writing of DDS cartridges

Link 4A

- Simulates Link 4A input to AN/ASW-25 receiver
 - used for Carrier Inertial Alignment
 - Airborne Data Link Strike Attack Vector
- Custom VME circuit
 - COTS base card
 - Intel 87C51 microcontroller based

Threat Environment

Video ATEWS

 generates video and emulates ALQ-99 receivers for bands 1,2,4,6,7,8,9 and 10

Electronic Order of Battle

- DMA map based simulation allows user to define threat platform locations
- links to ATEWS for threat signal generation
- generates flight profiles
 - CDNU compatible flight plan
 - control file for dynamic navigation
- monitors actual flight path when used with stick and throttle or IMUX replay

Data Analysis

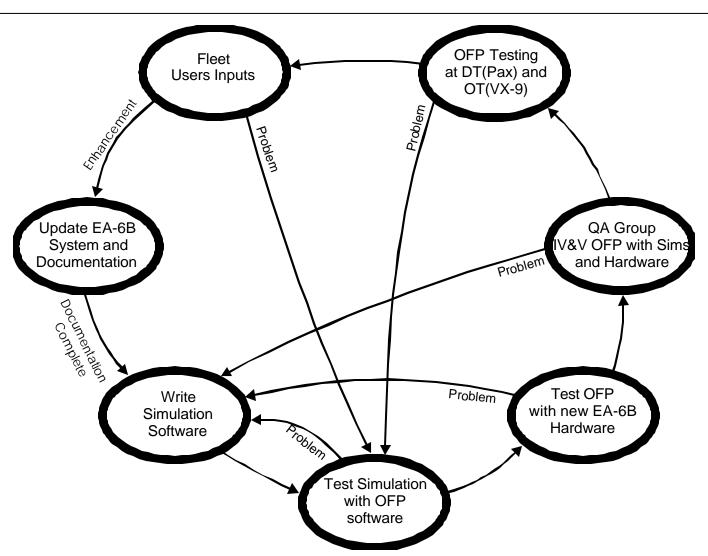
IMUX

- data collected via IMUX analyzed using ITAS software package
- PASS-1000
 - Mil-std-1553 and Arinc-429 data collected and analyzed by SBS technologies PC based hardware

Custom Programs

- VME Mil-std-1553, Arinc-429 and serial interface to HARM 10.4 khz
- fully parses and interprets in engineering units as well as graphical bitwise representations
 - HARM handoff
 - UE/UEU main data word

Simulation Development



- Developed prior to availability of new hardware/software
- Developed with new system interface specifications
- Simulation is debugged with the new OFP software
- OFP is updated when tested with actual hardware
 - These changes are then updated in the simulation and re-tested on the OFP.

Test and Update Process

Discrepancy Reporting, Tracking and Version Control

- WSSL Discrepancy/Enhancement Forms
 - Available in the WSSL to report problems
- Software Version Control
 - Maintain Version descriptions within the source code for both Client and Server sides
- Problem Tracking System
 - Currently implementing an Intranet based Access database for Discrepancy/Enhancement inputs

Summary

- 15 years of development has resulted in a set of scenario generation, aircraft simulations and data analysis tools that serves both the aircraft S/W and H/W integration and test environments
- The Simulation Verification and Validation process has evolved over time to the current process
- There is a good working relationship between OFP engineers, system engineers, and simulation engineers
- Since these Simulations are used only for development and initial testing, there have no formal attempts at Accreditation.